Local Error Structures and Order Conditions in Terms of Lie Elements for Exponential Splitting Schemes

نویسندگان

  • Zdzisław Kamont
  • Winfried Auzinger
  • Wolfgang Herfort
  • Alexander Gomilko
چکیده

We discuss the structure of the local error of exponential operator splitting methods. In particular, it is shown that the leading error term is a Lie element, i.e., a linear combination of higher-degree commutators of the given operators. This structural assertion can be used to formulate a simple algorithm for the automatic generation of a minimal set of polynomial equations representing the order conditions, for the general case as well as in symmetric settings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTI FRACTURE/DELAMINATION ANALYSIS OF COMPOSITES SUBJECTED TO IMPACT LOADINGS

A combined finite/ discrete element method is presented for modelling of composite specimens subjected to dynamic/impact loadings. The main task is set on developing an algorithm for simulation of potential bonding and debonding/delamination phenomena during impact or general dynamic loading conditions. In addition, full fracture analysis can also be performed. The proposed approach adopts a ge...

متن کامل

An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime

In this paper, we are concerned with the derivation of a local error representation for exponential operator splitting methods when applied to evolutionary problems that involve critical parameters. Employing an abstract formulation of differential equations on function spaces, our framework includes Schrödinger equations in the semi-classical regime as well as parabolic initial-boundary value ...

متن کامل

High-order splitting schemes for semilinear evolution equations

We first derive necessary and sufficient stiff order conditions, up to order four, for exponential splitting schemes applied to semilinear evolution equations. The main idea is to identify the local splitting error as a sum of quadrature errors. The order conditions of the quadrature rules then yield the stiff order conditions in an explicit fashion, similarly to that of Runge–Kutta schemes. Fu...

متن کامل

Avoiding order reduction when integrating diffusion-reaction boundary value problems with exponential splitting methods

In this paper, we suggest a technique to avoid order reduction in time when integrating reaction-diffusion boundary value problems under non-homogeneous boundary conditions with exponential splitting methods. More precisely, we consider Lie-Trotter and Strang splitting methods and Dirichlet, Neumann and Robin boundary conditions. Beginning from an abstract framework in Banach spaces, a thorough...

متن کامل

Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part III: The nonlinear case

The present work is concerned with the efficient time integration of nonlinear evolution equations by exponential operator splitting methods. Defect-based local error estimators serving as a reliable basis for adaptive stepsize control are constructed and analyzed. In the context of time-dependent nonlinear Schrödinger equations, asymptotical correctness of the local error estimators associated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014